Structural stability of p(x)-Laplacian kind problems with maximal monotone graphs and Neumann type boundary condition

Authors

  • Stanislas Ouaro Laboratoire de Mathematiques et d'Informatique, UFR Sciences Appliquees et Technologie, Universite de Dedougou, Burkina Faso
  • Kpê Kansié Laboratoire de Mathematiques et d'Informatique, UFR Sciences Exactes et Appliquees, Universit'e Joseph KI ZERBO, Burkina Faso

DOI:

https://doi.org/10.56947/amcs.v21.247

Keywords:

Generalized Lebesgue-Sobolev spaces, Renormalized solution, Lebesgue-Sobolev spaces, Leray-Lions operator, maximal monotone graph, Young measures

Abstract

In this work, we study the convergence of a sequence of solutions of degener- ate elliptic problems with variable coercivity and growth exponents. The functional setting involves Lebesgue and Sobolev spaces with variable exponent which varies also with n.

Downloads

Download data is not yet available.

Downloads

Published

2024-02-17

Issue

Section

Articles