ANALYZING THE EXPRESSIONS OF T_1-CORONA COMPOSITE GRAPHS VIA ZAGREB INDICES

MANJUNATHA GALI1 D. G. PRAKASHA2 AND CHETANA GALI3,∗

ABSTRACT. To enrich the field of transformation graphs, we put forward four T_1-Corona composite graphs. The Zagreb indices plays vital role in chemical graph theory. In this paper, we obtain the explicit expressions for first and second Zagreb indices of T_1-Corona composite graphs.

1. INTRODUCTION AND PRELIMINARIES

A structural representation of a chemical compound is a molecular graph. The atoms of chemical compound represent the vertices and chemical bonds represent the edges of the molecular graphs. Topological index is a unique number that dogmatise some physico-chemical properties of a chemical compound. The applications of topological indices are usually associated with quantitative structure property relationship (QSPR) and quantitative structure activity relationship (QSAR) [9, 10].

All graphs in this paper are finite, simple and connected. Let $V(G)$ be the vertex set and $E(G)$ be the edge set of a graph G. The degree of a vertex u in G is the number of vertices adjacent to u and denoted by $d_G(u)$. The degree of an edge $e = uv$ is defined as $d_G(e) = d_G(u) + d_G(v) - 2$. The number of vertices and edges of G are denoted by n_G and m_G respectively. For undefined terminologies refer [5].

The first and second Zagreb indices [4] are introduced by Gutman and Trinajstić in the year 1972, and are respectively defined as

$$M_1(G) = \sum_{u \in V(G)} d_G(u)^2 = \sum_{uv \in E(G)} d_G(u) + d_G(v)$$

(1.1)

and

$$M_2(G) = \sum_{uv \in E(G)} d_G(u) d_G(v).$$

(1.2)

The F-index [3] is another vertex degree based molecular descriptor defined as

$$F(G) = \sum_{u \in V(G)} d_G(u)^3 = \sum_{uv \in E(G)} d_G(u)^2 + d_G(v)^2.$$

(1.3)
Milićević et al. [7] in 2004 reformulated the Zagreb indices in terms of edge-degrees instead of vertex-degrees. The first and second reformulated Zagreb indices are defined respectively as

\[EM_1(G) = \sum_{e \in E(G)} d_G(e)^2 = \sum_{e \sim f}[d_G(e) + d_G(f)]. \]

and

\[EM_2(G) = \sum_{e \sim f} d_G(e) d_G(f). \]

For more study on Zagreb indices of transformation graphs, one can refer [1, 2, 6].

The corona [5] \(G \circ H \) of two graphs \(G \) and \(H \) is the graph obtained by taking one copy of graph \(G \) and \(n_G \) copies of \(H \), and then joining the \(i \)th vertex of \(G \) to every vertex in \(i \)th copy of \(H \).

The order and size of \(G \circ H \) are \(n_G(1+n_H) \) and \(m_G+n_Gm_H+n_Gn_H \), respectively. The degree of a vertex \(x \in V(G \circ H) \) is given by

\[
d_{G\circ H}(x) = \begin{cases}
d_G(x) + n_H & \text{if } x \in V(G), \\
d_G(x) + 2 & \text{if } x \in E(G), \\
d_H(x) + 1 & \text{if } x \in V(H).
\end{cases} \tag{1.4}
\]

Sampathkumar and Chikkodimath introduced the concept of semitotal line graph. The semitotal line graph is also known as edge semitotal graph or middle graph or Q-graph.

The semitotal line graph [8] \(T_1(G) \) of \(G \) is the graph whose vertex set is \(V(G) \cup E(G) \) whose two vertices are adjacent if and only if (i) they are adjacent lines of \(G \) or (ii) one is vertex of \(G \) and the another is an edge of \(G \) incident with it.

In section 2, we introduce \(T_1 \)-Corona composite graphs. In section 3 and 4, we give expressions for first Zagreb index and second Zagreb index of \(T_1 \)-Corona composite graphs.

2. \(T_1 \)-Corona composite graphs

In this section, we introduce four \(T_1 \)-Corona composite graphs namely, \(T_1 \)-vertex corona, \(T_1 \)-edge corona, \(T_1 \)-vertex neighborhood corona and \(T_1 \)-edge neighborhood corona involving semitotal line graph and are defined as follows:

Definition 2.1. The \(T_1 \)-vertex corona of \(G \) and \(H \), denoted by \(T_1(G) \circ H \) is the graph obtained from one copy of \(T_1(G) \) and \(n_G \) copies of \(H \), and then joining a vertex of \(V(G) \), that is on the \(i \)th position in \(T_1(G) \) to every vertex in the \(i \)th copy of \(H \).

The graph \(T_1(G) \circ H \) has a number of \(n_G + m_G + n_Gn_H \) vertices and \(m_G + n_Gm_H + n_Gn_H \) edges. The degree of a vertex \(x \in V(T_1(G) \circ H) \) is given by

\[
d_{T_1(G)\circ H}(x) = \begin{cases}
d_G(x) + n_H & \text{if } x \in V(G), \\
d_G(x) + 2 & \text{if } x \in E(G), \\
d_H(x) + 1 & \text{if } x \in V(H). \end{cases} \tag{2.1}
\]
Definition 2.2. The T_1-edge corona of G and H, denoted by $T_1(G) \ominus H$ is the graph obtained from one copy of $T_1(G)$ and m_G copies of H and joining a vertex of $E(G)$, that is on ith position in $T_1(G)$ to every vertex in the ith copy of H.

The graph $T_1(G) \ominus H$ has $n_G + m_G + m_G n_H$ number of vertices and $m_G + \frac{1}{2} M_1(G) + m_G m_H + m_G n_H$ number of edges. The degree of a vertex $x \in V(T_1(G) \ominus H)$ is given by

$$dt_{T_1(G) \ominus H}(x) = \begin{cases}
 d_G(x) & \text{if } x \in V(G), \\
 d_G(x) + 2 + n_H & \text{if } x \in E(G) \\
 d_H(x) + 1 & \text{if } x \in V(H).
\end{cases} \tag{2.2}$$

Definition 2.3. The T_1-vertex neighborhood corona of G and H, denoted by $T_1(G) \square H$, is the graph obtained from one copy of $T_1(G)$ and n_G copies of H and joining the neighbors of a vertex in $T_1(G)$ corresponding to a vertex of G, that is on the ith position in $T_1(G)$ to every vertex in the ith copy of H.

The graph $T_1(G) \square H$ has $n_G + m_G + n_G n_H$ vertices and $m_G + \frac{1}{2} M_1(G) + n_G m_H + 2 m_G n_H$ edges. The degree of vertices of $T_1(G) \square H$ is given by:

$$\begin{align*}
 dt_{T_1(G) \square H}(u) &= d_G(u) \text{ if } u \in V(G), \\
 dt_{T_1(G) \square H}(e) &= d_G(e) + 2 + 2n_H \text{ if } e \in E(G), \\
 dt_{T_1(G) \square H}(u') &= d_H(u') + d_G(u) \text{ if } u' \in V(H), u \in V(G). \tag{2.3}
\end{align*}$$

In the last expression, $u' \in V(H)$ is the vertex in ith copy of H corresponding to ith vertex $u \in V(G)$ in $T_1(G)$.

Definition 2.4. The T_1-edge neighborhood corona of G and H, denoted by $T_1(G) \triangleright H$, is the graph obtained from one copy of $T_1(G)$ and m_G copies of H and joining the neighbors of a vertex in $T_1(G)$ corresponding to an edge of G, that is on the ith position in $T_1(G)$ to every vertex in the ith copy of H.

The graph $T_1(G) \triangleright H$ has $n_G + m_G + m_G n_H$ vertices and $m_G + M_1(G)[n_H + \frac{1}{2}] + m_G m_H$ edges. The degree of vertices of $T_1(G) \triangleright H$ is given by:

$$\begin{align*}
 dt_{T_1(G) \triangleright H}(u) &= d_G(u)(1 + n_H) \text{ if } u \in V(G), \\
 dt_{T_1(G) \triangleright H}(e) &= d_G(e)(1 + n_H) + 2 \text{ if } e \in E(G) \\
 dt_{T_1(G) \triangleright H}(v) &= d_H(v) + d_G(e') + 2 \text{ if } v \in V(H), e' \in E(G). \tag{2.4}
\end{align*}$$

3. First Zagreb index of T_1-corona composite graphs

Theorem 3.1. Let G and H be two connected simple graphs. Then

$$M_1(T_1(G) \odot H) = 5M_1(G) + EM_1(G) + n_G M_1(H) + n_G (n_H^2 + n_H + 4m_H) + 4m_G (n_H - 1).$$
Theorem 3.2. Let G and H be two connected simple graphs. Then

$$M_1(T_1(G) ⊙ H) = (2n_H + 5)M_1(G) + EM_1(G) + m_G M_1(H) + m_G(n_H - 2)(n_H + 2) + m_G(n_H + 4m_H).$$
Proof. Using (2.2) in equation (1.1), we get

\[
M_1(T_1(G) \ominus H) = \sum_{u \in V(G)} d_G(u)^2 + \sum_{e \in E(G)} [d_G(e) + (n_H + 2)]^2 + m_G \sum_{u' \in V(H)} (d_H(u') + 1)^2
\]

\[
= M_1(G) + EM_1(G) + (n_H + 2)^2m_G + 2(n_H + 2) \left[2 \left(-m_G + \frac{1}{2} M_1(G) \right) \right]
+ m_G \{ M_1(H) + n_H + 4m_H \}
\]

\[
= M_1(G) + EM_1(G) + (n_H + 2)^2m_G - 4(n_H + 2)m_G + 2(n_H + 2)M_1(G)
+ m_G \{ M_1(H) + n_H + 4m_H \}
\]

\[
= (2n_H + 5)M_1(G) + EM_1(G) + m_GM_1(H) + m_G(n_H - 2)(n_H + 2)
+ m_G(n_H + 4m_H).
\]

\[\square \]

Theorem 3.3. Let G and H be two connected simple graphs. Then

\[
M_1(T_1(G) \Box H) = 5(n_H + 1)M_1(G) + EM_1(G) + n_GM_1(H) + 4m_G(n_H + 1)^2
+ 8m_G(m_H - n_H - 1).
\]

Proof. Using (2.3) in equation (1.1), we get

\[
M_1(T_1(G) \Box H) = \sum_{u \in V(G)} d_G(u)^2 + \sum_{e \in E(G)} [d_G(e) + 2(n_H + 1)]^2 + \sum_{u \in V(G), u' \in V(H)} [d_G(u) + d_H(u')]^2
\]

\[
= M_1(G) + EM_1(G) + 4m_G(n_H + 1)^2 + 4(n_H + 1) \left[2 \left(-m_G + \frac{1}{2} M_1(G) \right) \right]
+ n_H \sum_{u \in V(G)} d_G(u)^2 + n_G \sum_{u' \in V(H)} d_H(u')^2 + 2 \sum_{u \in V(G)} d_G(u) \cdot \sum_{u' \in V(H)} d_H(u')
\]

\[
= M_1(G) + EM_1(G) + 4m_G(n_H + 1)^2 - 8m_G(n_H + 1) + 4(n_H + 1)M_1(G)
+ n_HM_1(G) + n_GM_1(H) + 8m_Gm_H
\]

\[
= 5(n_H + 1)M_1(G) + EM_1(G) + n_GM_1(H) + 4m_G(n_H + 1)^2
+ 8m_G(m_H - n_H - 1).
\]

\[\square \]

Theorem 3.4. Let G and H be two connected simple graphs. Then

\[
M_1(T_1(G) \oplus H) = [(n_H + 1)(n_H + 5) + 4(n_H + m_H)]M_1(G) + [(n_H + 1)^2 + n_H]EM_1(G)
+ m_GM_1(H) - 4m_G(3n_H + 1).
\]
Proof. Using (2.4) in equation (1.1), we get

\[M_1(T_1(G) \Box H) = \sum_{u \in V(G)} [(n_H + 1)d_G(u)]^2 + \sum_{e \in E(G)} [(n_H + 1)d_G(e) + 2]^2 \]
\[+ \sum_{e \in E(G); u' \in V(H)} [d_G(e) + d_H(u') + 2]^2 \]
\[= (n_H + 1)^2 M_1(G) + (n_H + 1)^2 EM_1(G) + 4m_G + 4(n_H + 1) \left[2 \left(-m_G + \frac{1}{2} M_1(G) \right) \right] \]
\[+ m_G M_1(H) + n_H EM_1(G) + 8m_G m_H - 8m_G n_H + 4n_H M_1(G) \]
\[- 8m_G m_H + 4m_H M_1(G) + 4n_H m_G \]
\[= [(n_H + 1)(n_H + 5) + 4(n_H + m_H)] M_1(G) + [(n_H + 1)^2 + n_H] EM_1(G) \]
\[+ m_G M_1(H) - 4m_G (3n_H + 1). \]

\[\square \]

4. Second Zagreb index of \(T_1 \)-Corona composite graphs

Theorem 4.1. Let \(G \) and \(H \) be two connected simple graphs. Then

\[M_2(T_1(G) \circ H) = 2(n_H + 1) M_1(G) + 2M_2(G) + 2EM_1(G) + EM_2(G) + F(G) \]
\[+ n_G \{ M_1(H) + M_2(H) \} + n_G n_H (n_H + 2m_H) + m_H (n_G + 4m_G) + m_G (2n_H - 4). \]

Proof. Using (2.1) in equation (1.2), we get

\[M_2(T_1(G) \circ H) = \sum_{a \sim b; a, b \in E(G)} [(d_G(a) + 2)(d_G(b) + 2)] + n_G \sum_{u' \in V(H)} [(d_H(u') + 1)(d_H(v') + 1)] \]
\[+ \sum_{u \sim e} [(d_G(u) + n_H)(d_G(e) + 2)] + \sum_{u \sim u'} [(d_G(u) + n_H)(d_H(u') + 1)] \]
\[= EM_2(G) + 2EM_1(G) + 4 \left(-m_G + \frac{1}{2} M_1(G) \right) + n_G [M_2(H) + M_1(H) + m_H] \]
\[+ \sum_{uv \in E(G)} [d_G(u) + d_G(v) + 2n_H][d_G(u) + d_G(v)] \]
\[+ \sum_{u \in V(G)} (d_G(u) + n_H) \cdot \sum_{u' \in V(H)} (d_H(u') + 1) \]
\[= EM_2(G) + 2EM_1(G) - 4m_G + 2M_1(G) + n_G [M_2(H) + M_1(H) + m_H] \]
\[+ F(G) + 2M_2(G) - 2M_1(G) - 4n_H m_G + 2n_H M_1(G) + 2M_1(G) + 4n_H m_G \]
\[+ 4m_G m_H + 2n_H m_G + 2n_G n_H m_H + n_H^2 m_G \]
\[= 2(n_H + 1) M_1(G) + 2M_2(G) + 2EM_1(G) + EM_2(G) + F(G) \]
\[+ n_G \{ M_1(H) + M_2(H) \} + n_G n_H (n_H + 2m_H) + m_H (n_G + 4m_G) + m_G (2n_H - 4). \]

\[\square \]
Theorem 4.2. Let G and H be two connected simple graphs. Then

\[
M_2(T_1(G) \oplus H) = \left[\frac{(n_H + 2)^2}{2} + 2(n_H + m_H) \right] M_1(G) + 2M_2(G) + F(G) \\
+ m_G \left\{ M_1(H) + M_2(H) \right\} + (n_H + 2)EM_1(G) + EM_2(G) \\
+ m_G [n_H^2 - (n_H + 2)^2] + m_G m_H (2n_H + 1).
\]

Proof. Using (2.2) in equation (1.2), we get

\[
M_2(T_1(G) \oplus H) = \sum_{a \sim b : a, b \in E(G)} [(d_G(a) + n_H + 2)(d_G(b) + n_H + 2)] \\
+ m_G \sum_{u'v' \in E(H)} [(d_H(u') + 1)(d_H(v') + 1)] \\
+ \sum_{u \sim e} [(d_G(u))(d_G(e) + n_H + 2)] + \sum_{u' \sim e} [(d_H(u') + 1)(d_H(e) + n_H + 2)] \\
= EM_2(G) + (n_H + 2)EM_1(G) + (n_H + 2)^2 \left(-m_G + \frac{1}{2} M_1(G) \right) \\
+ m_G \left\{ M_1(H) + M_2(H) + m_H \right\} + \sum_{u \in E(G)} [d_G(u) + d_G(v)][d_G(u) + d_G(v) + n_H] \\
+ \sum_{u' \in V(H)} (d_H(u') + 1) \cdot \sum_{e \in E(G)} (d_G(e) + n_H + 2) \\
= EM_2(G) + (n_H + 2)EM_1(G) - (n_H + 2)^2 m_G + \frac{(n_H + 2)^2}{2} M_1(G) \\
+ m_G \left\{ M_1(H) + M_2(H) + m_H \right\} + F(G) + 2M_2(G) + n_H M_1(G) \\
+ (2m_H + n_H) \left[2 \left(-m_G + \frac{1}{2} M_1(G) \right) + (n_H + 2)m_G \right] \\
= \left[\frac{(n_H + 2)^2}{2} + 2(n_H + m_H) \right] M_1(G) + 2M_2(G) + F(G) + m_G \left\{ M_1(H) + M_2(H) \right\} \\
+ (2 + n_H)EM_1(G) + EM_2(G) + m_G [n_H^2 - (n_H + 2)^2] + m_G m_H (2n_H + 1).
\]

\[\square\]

Theorem 4.3. Let G and H be two connected simple graphs. Then

\[
M_2(T_1(G) \boxplus H) = 2(n_H + 1)^2 + 6m_H + 5m_H [M_1(G) + 6M_2(G) + 3F(G) + 2(n_H + 1)EM_1(G) \\
+ EM_2(G) + 2m_G M_1(H) + n_G M_2(H) + 4m_G \{2n_H m_H - (n_H + 1)^2\}.
\]

Proof. Using (2.3) in equation (1.2), we get

\[
M_2(T_1(G) \boxplus H) = \sum_{a \sim b : a, b \in E(G)} [d_G(a) + 2(n_H + 1)][d_G(b) + 2(n_H + 1)] \\
+ \sum_{u' \sim e} [(d_H(u') + d_G(u))(d_G(e) + 2 + 2n_H)] + \sum_{u \sim e} [(d_G(u))(d_G(e) + 2 + 2n_H)] \\
+ \sum_{u \in V(G) \; u'v' \in V(H)} [d_H(u') + d_G(u)][d_H(v') + d_G(u)]
\]
Let u' and v' be the vertices of H corresponding to a vertex u of G.

$$
= EM_2(G) + 2(n_H + 1)EM_1(G) + 4(n_H + 1)^2 \left(-m_G + \frac{1}{2}M_1(G)\right)
$$

$$
+ 2 \sum_{u' \in V(H)} d_H(u') \sum_{e \in E(G)} [d_G(e) + 2(n_H + 1)] + 3 \sum_{u \in V(G)} [d_G(u) + d_G(v)][d_G(u) + d_G(v) + 2n_H]
$$

$$
+ m_H \sum_{u \in V(G)} d_G(u)^2 + \sum_{u \in V(G)} d_G(u) \sum_{u' \in V(H)} [d_H(u') + d_H(v')] + n_G \sum_{u' \in V(H)} [d_H(u') \cdot d_H(v')]
$$

$$
= EM_2(G) + 2(n_H + 1)EM_1(G) - 4m_G(n_H + 1)^2 + 2(n_H + 1)^2 M_1(G)
$$

$$
+ 4m_H \{M_1(G) + 2n_H M_1(G)\} + 3\{F(G) + 2M_2(G) + 2n_H M_1(G)\}
$$

$$
+ m_H M_1(G) + 2m_G M_1(H) + n_G M_2(H)
$$

$$
= [2(n_H + 1)^2 + 6n_H + 5m_H]M_1(G) + 6M_2(G) + 3F(G) + 2(n_H + 1)EM_1(G)
$$

$$
+ EM_2(G) + 2m_G M_1(H) + n_G M_2(H) + 4m_G \{2n_H m_H - (n_H + 1)^2\}.
$$

\[\Box\]

Theorem 4.4. Let G and H be two connected simple graphs. Then

$$
M_2(T_1(G) \boxdot H) = 2[n_H (m_H - n_H + 1) + 3(m_H + 1)M_1(G) + 2(n_H + 1)(2n_H + 1)M_2(G)
$$

$$
+ (n_H + 1)(2n_H + 1) F(G) + [2(n_H + 1)(n_H + m_H + 1) + (2n_H + 1)] EM_1(G)
$$

$$
+ (n_H + 1)(3n_H + 1) EM_2(G) + M_1(G) M_1(H) + m_G M_2(H)
$$

$$
- 8m_G (n_H + m_H + 1).
$$

Proof. Using (2.4) in equation (1.2), we get

$$
M_2(T_1(G) \boxdot H) = \sum_{a \sim b ; a, b \in E(G)} [d_G(a)(n_H + 1) + 2][d_G(b)(n_H + 1) + 2]
$$

$$
+ \sum_{u \sim e} [d_G(u)(n_H + 1)][d_G(e)(n_H + 1) + 2]
$$

$$
+ \sum_{e^2 \in (G)} \sum_{u' \in V(H)} [d_H(u') + d_G(e) + 2][d_H(v') + d_G(e) + 2]
$$

$$
+ \sum_{e \in E(G)} \sum_{u \sim u'} [d_G(u)(n_H + 1)][d_H(u') + d_G(e) + 2]
$$

$$
+ \sum_{e \sim u' \text{ and } u' \text{ is a vertex corresponding to copy } f \sim f} [d_G(e)(n_H + 1) + 2][d_H(u') + d_G(f) + 2]
$$

$$
= (n_H + 1)^2 EM_2(G) + 2(n_H + 1) EM_1(G) + 4 \left(-m_G + \frac{1}{2}M_1(G)\right)
$$

$$
+ (n_H + 1)^2 \sum_{u \in E(G)} [d_G(u) + d_G(v)]^2 - 2n_H (n_H + 1) \sum_{u \in E(G)} [d_G(u) + d_G(v)]
$$

$$
+ m_G \sum_{u' \sim v' \in E(H)} d_H(u')d_H(v') + \sum_{u' \sim v' \in E(H)} [d_H(u') + d_H(v')] \sum_{e \in E(G)} [d_G(e) + 2] + \sum_{e \in E(G)} [d_G(e) + 2]^2
$$
\begin{align*}
 &+ (n_H + 1) \sum_{u' \in V(H)} d_H(u') \sum_{u \in V(G)} d_G(u)^2 + n_H(n_H + 1) \sum_{u \in V(G)} (d_G(u) + d_G(v))^2 \\
 &+ (n_H + 1) \sum_{u' \in V(H)} d_H(u') \sum_{e \in E(G)} d_G(e)^2 + 2 \sum_{u' \in V(H)} d_H(u') \sum_{e \in E(G)} d_G(e) \\
 &+ n_H(n_H + 1) \left[2 \sum_{e \sim f} [d_G(e)d_G(f)] + 2 \sum_{e \in E(G)} d_G(e)^2 \right] + 2n_H \sum_{e \in E(G)} d_G(e)(d_G(e) + 2) \\
 &= (n_H + 1)^2 EM_2(G) + 2(n_H + 1) EM_1(G) + 2M_1(G) - 4m_G \\
 &+ (n_H + 1) \{ (n_H + 1) [F(G) + 2M_2(G)] - 2n_H M_1(G) \} \\
 &+ M_2(M_2(H) + M_1(G)M_1(H) + EM_1(G) + 4m_G - 8m_G + 4M_1(G) \\
 &+ 2m_H(n_H + 1)M_1(G) + n_H(n_H + 1) \{ F(G) + 2M_2(G) \} \\
 &+ 2m_H(n_H + 1)EM_1(G) + 4m_H \left[2 \left(-m_G + \frac{1}{2} M_1(G) \right) \right] \\
 &+ n_H(n_H + 1) \{ 2EM_2(G) + 2EM_1(G) \} + 2n_H \left[EM_1(G) + 4 \left(-m_G + \frac{1}{2} M_1(G) \right) \right] \\
 &= (n_H + 1)^2 EM_2(G) + 2(n_H + 1) EM_1(G) + 2M_1(G) - 4m_G \\
 &+ (n_H + 1)^2 F(G) + 2(n_H + 1)^2 M_2(G) - 2n_H(n_H + 1)M_1(G) \\
 &+ M_2(M_2(H) + M_1(G)M_1(H) + EM_1(G) - 4m_G + 4M_1(G) \\
 &+ 2(n_H + 1)m_H M_1(G) + n_H(n_H + 1) F(G) + 2n_H(n_H + 1)M_2(G) + 4(n_H + m_H)M_1(G) \\
 &+ [2m_H(n_H + 1) + 2n_H(n_H + 2)] EM_1(G) + 2n_H(n_H + 1)EM_2(G) - 8m_G(n_H + m_H). \\
\end{align*}

\[\square\]

\section*{References}

1 DEPARTMENT OF MATHEMATICS, SHRI GAVISIDDESHWAR ARTS, SCIENCE AND COMMERCE COLLEGE, KOPPAL-583231, INDIA.
 Email address: manjugalijack@gmail.com

2 DEPARTMENT OF MATHEMATICS, DAVANGERE UNIVERSITY, SHIVAGANGOTHRI., DAVANGERE-577007, INDIA.
 Email address: prakashadg@gmail.com

3 DEPARTMENT OF MATHEMATICS, DAVANGERE UNIVERSITY, SHIVAGANGOTHRI., DAVANGERE-577007, INDIA.
 Email address: chetanagali19@gmail.com