RESULTS OF SEMIGROUP OF LINEAR OPERATORS IN EXTRAPOLATION SPACES

A. Y. AKINYELE¹*, C. F. OZOKERAHA², J. B. OMOSOWON¹ AND S. A. OSHODI¹

ABSTRACT. Results of an omega-order preserving partial contraction mapping in generalized spaces are presented in this study. Assumed to be a closed linear operator on a Banach space X with a non-empty resolvent set in a semigroup of linear operators. If A is densely defined, the extrapolation spaces X^{-1} and X^{-1} will be associated with A in agreement. However, X^{-1} is a proper closed subspace of X^{-1} if A is not densely defined. Then, we demonstrated that the reason these spaces exist is because $(X^*)^{-1}$ and $(D(A_0))$ are naturally isomorphic to $(X^*)_{-1}$ and $(X^*)^{-1}$, respectively.

1. INTRODUCTION

According to Nagel et al. (see [7]), extrapolation spaces for strongly continuous semigroups of linear operators on Banach space have been created using a variety of techniques. They further stated that they typically show up as tools employed in a preliminary process to address the Cauchy problem on the original space. Assume X is a Banach space, $X_n \subseteq X$ is a finite set, $T(t)$ the C_0-semigroup, $\omega - OCP_n$ the ω-order preserving partial contraction mapping, M_m be a matrix, $L(X)$ be a bounded linear operator on X, P_n a partial transformation semigroup, $\rho(A)$ a resolvent set, $\sigma(A)$ a spectrum of A and $A \in \omega - OCP_n$ is a generator of C_0-semigroup. This paper consist of results of ω-order preserving partial contraction mapping generating some results of semigroup of linear operators in extrapolation space.

In the field of spectrum theory, Akinyele et al. [1] discovered some semigroup of linear operator findings. A semigroup of operators had some asymptotic behavior, according to Batty et al. [2]. Balakrishnan [3] was able to create an operator calculus for semigroup’s infinitesimal generators. Chill and Tomilov [4] came to some conclusions on a resolvent method for the stability operator semigroup. The spectra of linear operators were first presented by Davies [5]. Engel and Nagel [6], obtained one-parameter semigroup for linear evolution equations. Nagel et al. [7], identified extrapolation spaces for unbounded operators. Neerven [8], presented some results on adjoint of semigroup of linear operators. Both in [9] and [10], Omosowon et al. built a regular weak*-continuous semigroup of
linear operators and presented quasilinear equations of evolution on the semigroup of linear operator, a differential operator is produced by partially contraction mapping in reverse.

Some spectral and asymptotic characteristics of the dominated operator were established by Räbiger and Wolf [11]. Additionally, in [12], Rauf et al. reported some results of stability and spectrum features on semigroup of linear operator. Akinyele et al. [13] further Vrabie [14], proved some results of C_0-semigroup and its applications. Yosida [15], obtained some results on differentiability and representation of one-parameter semigroup of linear operators.

2. Preliminaries

Definition 2.1 (C₀-Semigroup) [14]
A C_0-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2 (ω-OCPₙ) [13]
A transformation $\alpha \in P_n$ is called ω-order preserving partial contraction mapping if $\forall x, y \in \text{Dom}\alpha : x \leq y \implies \alpha x \leq \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that $T(t + s) = T(t)T(s)$ whenever $t, s > 0$ and otherwise for $T(0) = I$.

Definition 2.3 (Extrapolation) [16]
Extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable.

Definition 2.4 (closed linear operator) [15]
Let X, Y be two Banach spaces. A linear operator $A : D(A) \subseteq X \to Y$ is closed if for every sequence x_n in $D(A)$ converging to x in X such that $Ax_n \to y \in Y$ as $n \to \infty$, one has $x \in D(A)$ and $Ax = y$. Equivalently, A is closed if its graph is closed in the direct sum $X \oplus Y$.

Example 1
2×2 matrix $[M_m(\mathbb{N} \cup \{0\})]$
Suppose

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{2t} & e^t \\ e^t & e^{2t} \end{pmatrix}.$$

Example 2
3×3 matrix $[M_m(\mathbb{N} \cup \{0\})]$
Suppose

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$
and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{2t} & e^{2t} & e^{3t} \\ e^{2t} & e^{2t} & e^{2t} \\ e^t & e^{2t} & e^{2t} \end{pmatrix}.$$

Example 3

3×3 matrix $[M_m(C)]$, we have

for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X.

Suppose we have

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA \lambda}$, then

$$e^{tA \lambda} = \begin{pmatrix} e^{2t \lambda} & e^{2t \lambda} & e^{3t \lambda} \\ e^{2t \lambda} & e^{2t \lambda} & e^{2t \lambda} \\ e^{t \lambda} & e^{2t \lambda} & e^{2t \lambda} \end{pmatrix}.$$

Theorem 2.1 Hille-Yoshida [13]

A linear operator $A : D(A) \subseteq X \rightarrow X$ is the infinitesimal generator for a C_0-semigroup of contraction if and only if

i. A is densely defined and closed,

ii. $(0, +\infty) \subseteq \rho(A)$ and for each $\lambda > 0$, we have

$$\|R(\lambda, A)\|_{L(X)} \leq \frac{1}{\lambda}.$$ \hspace{1cm} (2.1)

3. **Main Results**

This section present results of semigroup of linear operators in extrapolation space generated by $\omega-OCP_n$:

Theorem 3.1. Suppose $A \in \omega - OCP_n$ is a generator of a semigroup of linear operator. Then,

(i) For each $X \in \rho(A), \lambda - A^{-1}$ is an isomorphism of X onto X^{-1}.

(ii) If $\lambda \in \rho(A)$, then $\lambda \in \rho(A^{-1})$ and $R(\lambda, A^{-1})(x, y) = (R(\lambda, A)x R(\lambda, A)y) = -AR(\lambda, A)x + R(\lambda, A)y$.

Specifically, $R(\lambda, A) + R(\lambda, A^{-1})|_x$ and A is the part of A^{-1} in X. Moreover, there is a constant $C > 0$ independent of λ such that

$$\|R(\lambda, A^{-1})\|_{X^{-1}} \leq C\|R(\lambda, A)\|.$$ \hspace{1cm} (3.1)

Proof. First we prove that A^{-1} maps X one-one onto X^{-1}. If

$$(\lambda - A^{-1})x = (\lambda - A^{-1})y,$$ \hspace{1cm} (3.1)

then

$$(x, \lambda x) = (y, \lambda y).$$ \hspace{1cm} (3.2)
which means that \(x - y \in D(A) \) and
\[
A(x - y) = \lambda(x - y).
\]
(3.3)

But \(\lambda - A \) is one-one and therefore
\[
x = y.
\]
(3.4)

For surjectivity, let \((x, y) \in X \times X \), we can check that
\[
(\lambda - A^{-1})(-AR(\lambda, A)x + R(\lambda, A)y) = (x, y).
\]
(3.5)

It is clear that \(\lambda - A^{-1} \) is bounded as map \(X \to X^{-1} \). Therefore it is an isomorphism by the open mapping theorem. It then follows that each \(\mu \in \rho(A) \) and \(A \in \omega - OCP_n \), we have that
\[
\|(x, y)\|_\mu := \|AR(\mu, A)x - R(\mu, A)y\|
\]
defines and equivalent norm \(X^{-1} \). In fact with respect to \(\cdot \|_\mu, \mu - A^{-1} : X \to X^{-1} \) is isoperimetrical isomorphism.

To prove (ii), we have that the inverse \(R(\lambda, A^{-1}) : X^{-1} \to X \) of \(\lambda - A^{-1} \) exists by (i) of Theorem 3.1 and is given by
\[
R(\lambda, A^{-1})(x, y) = -AR(\lambda, A)x + R(\lambda, A)y
= (0, -AR(\lambda, A)x + R(\lambda, A)y)
= (R(\lambda, -A)x, R(\lambda, A)y)
\]
(3.6)

particularly for \(y \in X \) and \(A \in \omega - OCP_n \), we have
\[
R(\lambda, A)y = R(\lambda, A^{-1})(0, y) = R(\lambda, A)y.
\]
(3.7)

To prove that \(A \) is the part of \(A^{-1} \) in \(X \), let \(x \in D(A^{-1}) = X \) with \(A^{-1}x \in X \). Then also \((\lambda - A^{-1})x \in X \) and consequently
\[
x = R(\lambda, A^{-1})(\lambda - A^{-1})x = R(\lambda, A)(\lambda - A^{-1})x
\]
(3.8)

This shows that \(x \in D(A) \). Moreover, applying \(\lambda - A \) to this identity gives
\[
(\lambda - A)x = (\lambda - A)R(\lambda, A)(\lambda - A^{-1})x = (\lambda - A^{-1})x,
\]
so
\[
Ax = A^{-1}x.
\]
(3.9)

Therefore, \(A \) is the part of \(A^{-1} \) in \(X \). Fix any \(\mu \in \rho(A) \) and \(A \in \omega - OCP_n \). Then
\[
|R(\lambda, A^{-1})(x, y)|_\mu = \|AR(\mu, A)R(\lambda, A)x - R(\mu, A)R(\lambda, A)y\|
\leq \|R(\lambda, A)|||AR(\mu, A)x - R(\mu, A)y||
= \|R(\lambda, A)|||(x, y)|_\mu.
\]
(3.10)

Since \(\cdot \|_\mu \) is an equivalent norm on \(X^{-1} \), then the result follows. Hence the proof is complete.

\[\square\]

Theorem 3.2. Let \(A \) be closed linear operator and densely defined on \(X \) with \(\lambda \in \rho(A) \). Then

(i) \(|x_1| = \|(\lambda - A)x_1\| \) defines an equivalent norm on \(X_1 \).
Proof. We have
\[|x_1| = \|(\lambda - A)x_1\| \leq \max(\lambda, 1)(\|x_1\| + \|Ax_1\|). \]
Also,
\[\|x_1\| + \|Ax_1\| = \|R(\lambda, A)(\lambda - A)x_1\| + \|\lambda R(\lambda, A) - I\| (\lambda - A)x_1\| \leq ((1 + |\lambda|)\|R(\lambda, A)\| + 1)|x_1|, \]
and this complete the proof of (i).

To prove (ii), we have that the independence of λ follows easily from the resolvent identity. We need to prove that ϕ is an isomorphism. Clearly, ϕ is one-one. By the open mapping theorem, it suffices to prove continuity and surjectivity of ϕ. For a continuity, we let C be the norm of $R(\lambda, A^{*-1})$ when regarded as an isomorphism $(X^*)^{-1} \rightarrow X^*$ and C^* the constant for the equivalent norms of the in (i) of Theorem 3.2, we then have
\[|\phi(x^*, y^*)(x_1)| \leq C\|(x^*, y^*)\||(\lambda - A)x_1\| \leq CC^*\|(x^*, y^*)\|\|x_1\|_{D(A)}. \]
For surjectivity, we have that if $x_1^* \in (X_1)$; then by (i) of Theorem 3.2, have
\[\langle z^*, (\lambda - A)x_1 \rangle := \langle x_1^*, x_1 \rangle \]
defines a boundary linear functional $z^* \in X^*$. In view of the identity
\[(\lambda - A^{*-1})(-A^*R(\lambda, A^*)x^* + R(\lambda, A^*)y^*) = (x^*, y^*), \]
for all $x_1 \in X_1$ we have
\[\phi(z^*, \lambda z^*)(x_1) = \langle R(\lambda, A^{*-1})(z^*, \lambda^*), (\lambda - A)x_1 \rangle \]
\[= \langle -A^*R(\lambda, A^*)z^* + R(\lambda, A^*)\lambda z^*, (\lambda - A)x_1 \rangle \]
\[= \langle z^*, (\lambda - A)x_1 \rangle = \langle x_1^*, x_1 \rangle. \]
Therefore, $x_1^* = \phi(z^*, \lambda z^*)$. This proves the first part of (ii). Next we show that ϕ maps X^* onto $D((A_1)^*)$.

First into: If $x^* \in X^*$, then for $x_1 \in D(A)$ and $A \in \omega - OCP_n$, we have
\[\langle \phi(0, x^*), A_1 x_1 \rangle = \langle R(\lambda, A^{*-1})(0, x^*), (\lambda - A)Ax_1 \rangle \]
\[= \langle R(\lambda, A^*)x^*, (\lambda - A)Ax_1 \rangle \]
\[= \langle A^*R(\lambda, A^*)x^*, (\lambda - A)x_1 \rangle \]
\[= \langle R(\lambda, A^{*-1})(-x^*, 0), (\lambda - A)x_1 \rangle \]
\[= \langle \phi(-x^*, 0), x_1 \rangle. \]
This proves $(A_1)^*\phi x^* = \phi A^{*-1}x^*$. At the same time we have
\[|\langle \phi(0, x^*), A_1 x_1 \rangle| \leq \|\phi(-x^*, 0)\|\|x_1\|, \]
which by definition of $(A_1)^*$ implies that $\phi(0, x^*) \in D((A_1)^*)$.

Next onto: If $x^*_1 \in D((A)^*)$ and $A \in \omega - OCP_n$, then letting z^* as above, in view of (i) in Theorem 3.2,
\[
|\langle z^*, Ax_1 \rangle| = |\langle x^*_1, R(\lambda, A)x_1 \rangle| \\
= |\langle x^*_1, A_1 R(\lambda, A)x_1 \rangle| \\
\leq \|(A_1)^* x^*_1 \|_{(X_1), C''} \|x_1\|. \quad (3.14)
\]
Therefore $z^* \in D(A^*)$. But then
\[
x^*_1 = \phi(z^*, \lambda z^*) = \phi(0, \lambda z^* - A^* z^*) \in \phi X^*.
\]
Hence, the proof is completed.
\[\square\]

Theorem 3.3. Let $A \in \omega - OCP_n$ be linear closed operator and the generator of a C_0-semigroup on X with $\lambda \in \rho(A)$. Then:

(i) the isomorphism $\phi : (X^*)^{-1} \simeq (X_1)^\circ$ induces an isomorphism $(X^\circ)^{-1} \simeq (X_1)^\circ$.

(ii) X is dense in X^{-1} if and only if A is densely defined.

Proof. We have
\[
(X_1)^\circ = \overline{D((A_1)^*)}^{(X_1)^*}.
\]
Under the identification, ϕ, the space $D((A_1)^*)$ is just
\[
D(A^{*-1}) = X^*.
\]
Therefore, $(X_1)^\circ$ can be identifies with the closure of X^* in $(X^*)^{-1}$. But this closure is easily seen to be $(X^\circ)^{-1}$ such that inclusion \supset follows from
\[
(0, x^*) = (0, (\lambda - A^*) R(\lambda, A^*) x^*) \\
= (R(\lambda, A^*) x^*, \lambda R(\lambda, A^*) x^*) \in (X^\circ)^{-1}. \quad (3.15)
\]
The inclusion \supset follows from
\[
(x^\circ, y^\circ) = \lim_{\lambda} (\lambda R(\lambda, A^*) x^\circ, \lambda R(\lambda, A^*) y^\circ) \\
= \lim_{\lambda} (0, \lambda R(\lambda, A^*) y^\circ - A^* \lambda R(\lambda, A^*) x^\circ) \in \overline{X^*}^{(X^*)^{-1}},
\]
which proves (i).

To prove (ii), we assume A is densely defined and let $(x, y) \in X^{-1}$ be arbitrary. Choose $z \in X$ such that
\[
(\lambda - A^{-1}) z = (x, y).
\]
Suppose there exists $z_n \subset D(A)$ such that $z_n \to z$ in X. Then by (i) of Theorem 3.1,
\[
(\lambda - A) z_n = (\lambda - A^{-1}) z_n \to (\lambda - A^{-1}) z = (x, y), \quad (3.16)
\]
the convergence being in X^{-1}. Therefore X is dense X^{-1}.

Conversely, let X be dense in X^{-1}. Let $x \in X$, assume a sequence $(x_n) \subset X$ such that $x_n \to (\lambda - A^{-1}) x$ in X^{-1}. Then, again by (i) of Theorem 3.1, we have
\[
R(\lambda, A) x_n = R(\lambda, A^{-1}) x_n \to R(\lambda, A^{-1}) (\lambda - A^{-1}) x = x,
\]
and the convergence being in \(X \). Therefore \(D(A) \) is dense in \(X \), and this achieved the proof.

\[\square \]

Theorem 3.4. Suppose \(A \in \omega - OCP_n \) is a Hille-Yosida operator on \(X \). Then:

i) \(A_0 \) generates a \(C_0 \)-semigroup \(T_0(t) \) on \(X_0 \) and \(R(\lambda, A_0) = R(\lambda, A)|_{X_0} \);

ii) \(X_0 \) is \(X_{-1} \)-dense in \(X \) and the map \(i_0 \) extends to an isomorphism \((X_0)_{-1} \cong X_{-1} \);

iii) under the identification \((X_0)_{-1} = X_{-1} \), we have \((A_0)_{-1} = A_{-1} \);

iv) \(T_0(t) \) extends to \(C_0 \)-semigroup \(T_{-1}(t) \) on \(X_{-1} \), whose generator is \(A_{-1} \).

Proof. It is understandable that \(A_0 \) is a Hille-Yosida operator (of the same type) on \(X_0 \) again. We claim that \(A_0 \) is densely defined. This follows from

\[D(A_0) \ni R(\lambda, A)R(\mu, A)x \to R(\mu, A)x \text{ as } \lambda \to \infty \]

(applying the resolvent identity), showing that \(D(A_0) \) is dense in the dense subspace \(R(\lambda, A)X \) of \(X_0 \). The assertion concerning the resolvent is trivial, and this proves (i).

To prove (ii), let fix \(x \in X \) arbitrary. Since \(R(\mu, A)x \in X, A \in \omega - OCP_n \) and \(D(A_0) \) is dense in \(X_0 \), then there is a sequence \((x_n) \subset X_0 \) such that \(R(\mu, A)x_n \to R(\mu, A)x \). We assert that \(x_n \to x \) in \(X_{-1} \). In fact,

\[\|x_n - x\|_{-1} = \|R(\mu, A)(x - x_n)\| \to 0. \] (3.17)

This proves the denseness assertion. For any \(x_0 \in X_0 \) and \(A \in \omega - OCP_n \), we have

\[\|x_0\|_{(x_0)_{-1}} = \|R(\mu, A)x_0\| = \|x_0\|_{X_{-1}}. \] (3.18)

Thus, \(i_0 \) extends to an isomorphism \((X_0)_{-1} \to X_{-1} \).

To prove (iii), assume \(A \) has type \((M, w)\). Let \(A \in \omega - OCP_n \) be a closed operator with \(\lambda \in \rho(A) \). Then \(D(A_{-1}) = X_0 \) and \(\lambda - A_{-1} : X_0 \to X_{-1} \) is an isomorphism and \(A \) is the part of \(A_{-1} \) in \(X \). Since \(\lambda \in \rho(A) \), then \(\lambda \in \rho(A_{-1}) \) and

\[R(\lambda, A) = R(\lambda, A_{-1})|_X. \] (3.19)

Then we have that \((w, \infty) \subset \rho(A_{-1})\) and

\[R(\lambda, A_{-1})|_X = R(\lambda, A) \text{ for } \lambda > w. \]

Applying this to \(A_0 \) shows that

\[R(\lambda, (A_0)_{-1})|_{X_0} = R(\lambda, A_0) = R(\lambda, A)|_{X_0}. \] (3.20)

Since \(X_0 \) is dense in \(X_{-1} \) it follows that

\[R(\lambda, (A_0)_{-1}) = R(\lambda, A_{-1}). \] (3.21)

Thus,

\[(A_0)_{-1} = A_{-1}. \] (3.22)

and this proves (iii).
To prove (iv), first we show that A_{-1} is Hille-Yosida on X_{-1}. In fact, for any $x \in X$, $A \in \omega - \text{OCP}_n$ and $n \in \mathbb{N}$, we have

$$
\|R(\lambda, A_{-1})^n x\|_{-1} = \|R(\lambda, A)^n R(\mu, A)x\|
\leq \frac{M}{(\lambda - w)^n} \|R(\mu, A)x\|
= \frac{M}{(\lambda - w)^n} \|x\|_{-1}.
$$

(3.23)

Since $D(A_{-1}) = X_0$ is dense in X_{-1} it follows that A_{-1} is the generator for C_0-semigroup $T_{-1}(t)$ on X_{-1}. For $x_0 \in X_0$ and $A \in \omega - \text{OCP}_n$, we have by applying exponential formula to A_{-1}, we have

$$
T_{-1}x_0 = \lim_{n \to \infty} \left(\frac{n}{t} R \left(\frac{n}{t}, A_{-1} \right) \right)^n x_0 = \lim_{n \to \infty} \left(\frac{n}{t} R \left(\frac{n}{t}, A_0 \right) \right)^n x_0 = T_0(t).
$$

(3.24)

We note that the convergence in both limits is with respect to the norm of X_{-1}. Bt since A_0 is also a generator, by applying the exponential formula to A_0, the latter limit is actually in the sense of X_0. Hence the prove is completed.

□

Theorem 3.5. Assume $A \in \omega - \text{OCP}_n$ is the generator of a C_0-semigroup. Then:

(i) $X^\circ = \left\{ x^* \in X^* : \lim_{\lambda \to \infty} \|\lambda R(\lambda, A)^* x^* - x^*\| = 0 \right\}$;

(ii) the restriction map i_0 induces an isomorphism $X^\circ \simeq (X_0)^\circ$, under which we have $i_0^* T(\circ)(t) = T_0^0(t) i_0^*$.

Furthermore, for all $x \in X$, and $x^\circ \in X^\circ$, we have

$$
\langle x^\circ, x \rangle = \lim_{n \to \infty} \langle i_0^* x^\circ, x_n \rangle,
$$

(3.25)

where (x_n) is any bounded sequence in X_0 such that $R(\mu, A)x_n \to R(\mu, A)x$ in X, that is $x_n \to x$ in X_{-1}.

Proof. By the resolvent identity, it is clear that

$$
\lim_{\lambda} R(\lambda, A)^* R(\mu, A)^* x^* = R(\mu, A)^* x^*
$$

for all $x^* \in X^*$ and $A \in \omega - \text{OCP}_n$. By the uniform boundedness of $\|\lambda R(\lambda, A)^*\|$ near $\lambda = \infty$, the inclusion \subset follows. The converse inclusion is trivial, and that complete the prove of (i).

To prove (ii), first let $x^* \in R(\lambda, A)^* X^*$ and $A \in \omega - \text{OCP}_n$, say $x^* = R(\lambda, A)^* y^*$. We assert that the restriction $i_0^* x^*$ belongs to $R(\lambda, A_0)^* X_0^*$. For arbitrary $x_0 \in X$ we have

$$
\langle i_0^* x^*, x_0 \rangle = \langle y^*, R(\lambda, A)x_0 \rangle = \langle i_0^* y, R(\lambda, A_0)x_0 \rangle = \langle R(\lambda, A_0)^* i_0^* y, x_0 \rangle
$$

(3.27)

and therefore,

$$
i_0^* x^* = R(\lambda, A_0)^* i_0^* y^* \in R(\lambda, A_0)^* X_0^*.
$$
providing the claim. Next since the closure of $M \cdot R(\lambda, A)Bx_0$ contains $R(\lambda, A)Bx,
\|i_0^*x\|_{X_0^*} \leq \|x\|_{X^*} = \sup_{\|x\|} |\langle y^*, R(\lambda, A)x \rangle|
\leq M \sup |\langle y^*, R(\lambda, A)x_0 \rangle|
= M \|R(\lambda, A_0)\|_{X_0^*}
= M \|i_0^*x\|_{X_0^*}.
(3.28)
Therefore i_0^* maps the space $(R(\lambda, A)X^*, \| \cdot \|_{X^*})$ isomorphically into the space
$(R(\lambda, A_0)X^*, \| \cdot \|_{X_0^*})$. It is an easy consequence of the Hahn-Banach theorem
that this map is actually onto. Thus the first assertion of the theorem follows by
taking closures.

In order to prove the formula for $\langle x^\odot, x \rangle$, we choose $(x_n^*) \subset X^*$ such that
$R(\mu, A)\mu^x_n \rightarrow x^\odot$. Since
$$\lim_n \lim_m |\langle i_0^*R(\mu, A)x_n^*, x_n \rangle - \langle i_0^*x_n^*, x_n \rangle| = 0 \quad (3.29)$$
we have
$$\langle x^\odot, x \rangle = \lim_n \langle R(\mu, A)x_n^*, x_n \rangle
= \lim_n \lim_m \langle x_n^*, R(\mu, A)x_m \rangle
= \lim_n \lim_m \langle i_0^*R(\mu, A)^x_n^*, x_m \rangle
= \lim_m \langle i_0^*x^\odot, x_m \rangle. \quad (3.30)$$
The relation between $T^\odot(t)$ and $T_0^\odot(t)$ is proved as follows. First, by definition
of A^\odot and by what we have proved so far,
$$\langle R(\lambda, A^\odot)x^\odot, x \rangle = \langle R(\lambda, A)^x^\odot, x \rangle = \langle x^\odot, R(\lambda, A)x \rangle
= \langle i_0^*x^\odot, R(\lambda, A)x \rangle = \lim_{\mu} \langle i_0^*x^\odot, R(\lambda, A)\mu R(\mu, A)x \rangle
= \lim_{\mu} \langle R(\lambda, A_0)^x_i^*x^\odot, \mu R(\mu, A)x \rangle
= \langle kR(\lambda, A_0)^x_i^*x^\odot, x \rangle. \quad (3.31)$$
where $k : X^\odot_0 \rightarrow X^\odot$ is the inverse of $i_0^{|X^\odot}$. This shows that
$$R(\lambda, A^\odot) = kR(\lambda, A_0)^x_i^*.$$
Thus,
$$T^\odot(t) = kT_0^*(t)i_0^*$$
by the exponential formula. Hence the proof is completed.

Conclusion
In this paper, it has been established that ω-order preserving partial contraction
mapping generate some results of semigroup of linear operators in extrapolation
space.

Acknowledgment
The authors acknowledge the management of the university of Ilorin for providing
us with a suitable research laboratory and library to enable us carried out this research.

References

1 Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
2 Department of Statistics, Delta State Polytechnic, Ogara, Nigeria.
Email address: akinyele.ay@unilorin.edu.ng, andchrisben@gmail.com, jbo0011@mix.wvu.edu, shuayboshodi98@gmail.com