RING IN WHICH EVERY ELEMENT IS SUM OF \(N \) IDEMPOTENTS

KUMAR NAPOLEON DEKA\(^1\)* AND HELEN K.SAIKIA\(^2\)

Abstract. In this paper we discuss about the ring \(R \) in which every element is sum of \(n \) commuting idempotents and discuss the properties of it.

1. Introduction

In the paper[6] the authors discuss about the ring \(R \) in which every element is sum of two commuting idempotents and their related properties and shows that the elements satisfy the identity \(x^3 = x \) and \(R \cong R_1 \times R_2 \), where \(R_1 \) is Boolean and \(R_2 \) is zero or subdirect product of \(Z_3 \)'s. In the paper[2] the authors show in a ring every element is difference of two commuting idempotents if and only if \(R \) has the identity \(x^3 = x \). In the paper [7] the author discuss about the ring in which every element is sums of three or differences of two commuting idempotents. In the paper [8] the author discuss about the rings whose elements are linear combinations of three commuting idempotents. In the paper [9] the author discuss about the rings whose elements are sums or minus sums of two commuting idempotents. In the paper [10] the author discuss about the ring whose elements are sum of four commuting idempotents. Here we find the structure of the ring in which every element is sum of \(n \) commuting idempotents and discuss the properties of the ring. Then we find the structure of the ring in which every element is sum of \(n \) commuting idempotents and difference of \(m \) commuting idempotents. Then we find the structure of the ring in which every element is sum of \(n_1 \) and difference of \(m_1 \) commuting idempotents or / sum of \(n_2 \) and difference of \(m_2 \) commuting idempotents or /...or/ sum of \(n_i \) and difference of \(m_i \) commuting idempotents.

2. Preliminaries

All ring consider here is associative with unity. The Jacobson radical is denoted by \(J(R) \) for a ring \(R \). Also the all the units of a ring \(R \) is denoted by \(U(R) \). Again the Chinese Remainder Theorem states "Let \(R \) be ring and \(I,J \) be ideals in \(R \)
such that \(I + J = R \) then there exists a ring isomorphism \(R/(I \cap J) = R/I \times R/J \)
. For our work we take the generalized version which states if \(I_i, 1 \leq i \leq n \)

are ideals of a ring \(R \) with \(\sum_{i=1}^{n} I_i = R \) and \(\cap_{i=1}^{n} I_i = 0 \) then \(R \cong \left(\frac{R}{I_1} \right) \times \left(\frac{R}{I_2} \right) \times \cdots \times \left(\frac{R}{I_n} \right) \).

If a ring \(R \) is sum of \(n \) commuting idempotents we denote it by \(SI^n \). So the ring in which every element is sum of \(3, 4, 5 \) commuting idempotents are \(SI^3, SI^4, SI^5 \) respectively.

In the whole paper \(e_i \) represent the idempotent.

3. RINGS IN WHICH EVERY ELEMENT IS SUM OF \(n \) COMMUTING IDEMPOTENTS

Proposition 3.1. if every element of a ring \(R \) is sum of \(n \) idempotents (i.e \(R \) is \(SI^n \)) then for every \(k \in R \) we have

\[(k - n)\{k - (n - 1)\}\{k - (n - 2)\} \cdots (k - 3)(k - 2)(k - 1)k = 0\]

Proof. 1st we check for \(n = 2, 3, 4 \) then by induction we prove it.

1) Suppose \(R \) is a \(SI^2(n = 2) \) ring. So for every \(k \in R \) there exist idempotents \(e_i \in R, 1 \leq i \leq 2 \) with \(1 \leq i, j \leq 2, e_i e_j = e_j e_i \) such that \(k = e_1 + e_2 \).

Now \(k^2 = k + 2e_1e_2 \Rightarrow k^2 - k = 2e_1e_2 \Rightarrow (k^2 - k)k = 2e_1e_2(e_1 + e_2) = 4e_1e_2 = 2(k^2 - k) \Rightarrow (k - 2)(k - 1)k = 0 \).

2) Suppose \(R \) is a \(SI^3(n = 3) \) ring. So for every \(k \in R \) there exist idempotents \(e_i \in R, 1 \leq i, j \leq 3 \) with \(e_i e_j = e_j e_i \) such that \(k = e_1 + e_2 + e_3 \).

Now \(k^3 = e_1^3 + e_2^3 + e_3^3 + 3\{e_1^2(e_2 + e_3) + e_2^2(e_3 + e_1) + e_3^2(e_1 + e_2)\} + 6e_1e_2e_3 \Rightarrow k^3 - k = 3\{2(e_1e_2 + e_2e_3 + e_3e_1)\} + 6e_1e_2e_3 \Rightarrow k^3 - k = 2(e_1e_2 + e_2e_3 + e_3e_1) + 6e_1e_2e_3 \Rightarrow (k^3 - k)k = 2(k^2 - k)k = 6e_1e_2e_3 \Rightarrow (k^3 - k)(k^3 - 3k^2 + 2k) = \cdots = 0 \Rightarrow (k^3 - (k - 3)(k - 2)(k - 1)k = 0 \).

3) Suppose \(R \) is a \(SI^4(n = 4) \) ring. So for every \(k \in R \) there exist idempotents \(e_i \in R, 1 \leq i, j \leq 4 \) with \(e_i e_j = e_j e_i \) such that \(k = e_1 + e_2 + e_3 + e_4 \).

Now \(k^3 - k = 3(k^2 - k) + 6(e_1e_2e_3 + e_2e_3e_4 + e_3e_4e_1 + e_4e_1e_2) \Rightarrow (k^3 - 3k^2 + 2k)k = 3(k^3 - 3k^2 + 2k) + 24e_1e_2e_3e_4 \Rightarrow (k - 3)(k^3 - 3k^2 + 2k) = 4.24(e_1e_2e_3e_4 = 4(k - 3)(k^3 - 3k^2 + 2k) \Rightarrow (k - 4)(k - 3)(k - 2)(k - 1)k = 0 \).

Now suppose the result is true for \(n \). We are going to prove the result for \(n + 1 \) also. Therefore when \(k = e_1 + e_2 + e_3 + \cdots + e_n \) where \(e_i, 1 \leq i \leq n \)’s commute each other. Then \(k \) satisfy

\[(k - n)\{k - (n - 1)\}\{k - (n - 2)\} \cdots (k - 3)(k - 2)(k - 1)k = 0 \quad (3.1)\]

. Now, let \(k = e_1 + e_2 + e_3 + \cdots + e_n + e_{n+1} \) where \(e_i, 1 \leq i \leq (n + 1) \). So \(k - e_{n+1} \) is sum of \(n \) idempotents which commute each other so it satisfy the equation (3.1). Therefore \(\{k - e_{n+1} - n\}\{k - (e_{n+1} - 1)\}\{k - (e_{n+1} - 2)\} \cdots \{k - e_{n+1} - (n - 1)\}\{k - (e_{n+1} - 2)\} \cdots \{k - e_{n+1} - (n - 2)\} \cdots \{k - e_{n+1} - 3\} \{k - e_{n+1} - 2\} \{k - e_{n+1} - 1\}\{k - e_{n+1} - 0\} \Rightarrow \{k - n\}\{k - (n - 1)\}\{k - (n - 2)\} \cdots \{k - e_{n+1} - 1\} \Rightarrow \{k - (n - e_{n+1})\}\{k - (n - 1)\}\{k - (n - 2)\} \cdots \{k - (3)\} \{k - (2)\} \{k - (1)\} \{k - (0)\} \Rightarrow \{k - (n - e_{n+1})\}\{k - (n - 1)\}\{k - (n - 2)\} \cdots \{k - 3\} \{k - 2\} \{k - 1\} \{k - 0\} = 0 \Rightarrow (k - n)\{k - (n - 1)\}\{k - (n - 2)\} \cdots \{k - 3\} \{k - 2\} \{k - 1\} \{k - 0\} = 0 \Rightarrow (k - n)\{k - (n - 1)\} \cdots \{k - 3\} \{k - 2\} \{k - 1\} \{k - 0\} = 0
\[\Rightarrow \{(k-n)e_{n+1} - e_{n+1}\} = \{(k-(n-1))e_{n+1} - e_{n+1}\} = \{(k-(n-2))e_{n+1} - e_{n+1}\} = \ldots = \{(k-3)e_{n+1} - e_{n+1}\} = \{(k-2)e_{n+1} - e_{n+1}\} = \{(k-1)e_{n+1} - e_{n+1}\} = 0\]

Corollary 3.1. If every element of a ring \(R\) is the sum of \(n\) idempotents and difference of \(m\) idempotents which commute each other i.e every \(k \in R\) can be express as

\[k = e_1 + e_2 + \ldots + e_n - f_1 - f_2 - \ldots - f_m\] \(\text{(3.3)}\)

where \(e_i, f_j; 1 \leq i, j \leq n\) and \(e_i f_j = f_j e_i; 1 \leq i \leq n, 1 \leq j \leq m\) and \(f_i, f_j; 1 \leq i, j \leq m\), then for every \(k \in R\) we have

\[(k-n)(k-(n-1))(k-(n-2))(k-(n-3)) \ldots (k+1)(k+m) = 0\]

Proof. 1st we see, if \(e \in R\) with \(e^2 = e\) then \((1 - e)^2 = 1 - 2e + e^2 = 1 - 2e + e = 1 - e\). So 1 - e is also idempotent. Now, \((3.3) \Rightarrow k + m = e_1 + e_2 + \ldots + e_n + (1 - f_1) + (1 - f_2) + \ldots + (1 - f_m)\) so \(k + m\) is sum of \(m + n\) idempotents and they commute each other. Therefore using the Proposition 3.1 we have

\[
\{(k + m) - (m + n)\} \{(k + m) - (m + n - 1)\} \ldots \{(k + m) - 2\} \{(k + m) - 1\} (k + m) = 0
\]

\[
\Rightarrow (k-n)(k-(n-1))(k-(n-2))(k-(n-3)) \ldots (k+1)(k+m) = 0.
\]

Corollary 3.1. If every element of a ring \(R\) is sum of \(n\) idempotents and difference of \(n\) idempotents which commute each other then for every \(k \in R\) we have

\[(k-n)(k-(n-1))(k-(n-2)) \ldots (k+(n-2))(k+(n-1))(k+n) = 0\]

Corollary 3.2. If every element of a ring \(R\) is sum of \(n\) commuting idempotents \((SI^m)\) ring then every element of the ring can be express as sum of \(l\) idempotents and difference \(m\) idempotents which commute each other such that \(l + m = n\). Proof. Suppose \(k \in R\) so \(k\) can be express as sum of \(n\) idempotents (i.e \(R\) is \(SI^m\) ring) that commute each other. Now for \(k \in R, k + j, 1 \leq j \leq n\) is sum of \(n\) idempotents. Therefore \(k + j = e_1 + e_2 + \ldots + e_{n-j} + e_{n-(j-1)} + e_n\)

\[k = e_1 + e_2 + \ldots + e_{n-j} - (1 - e_{n-(j-1)}) - \ldots (1 - e_n)\] \(\text{(3.4)}\)

As \((1 - e)^2 = 1 - 2e + e^2 = 1 - 2e + e = 1 - e\), so \(1 - e\) is idempotent. So from \((3.4)\) we get \(k\) is sum of \(n - j\) idempotents and difference of \(j\) idempotents that commute each other. Putting \(n - j = l\) and \(j = m\) we get the result. The result can be express as if \(R\) is \(SI^m\) then every \(k \in R\) can be express as \(\pm e_1 \pm e_2 \pm \ldots \pm e_n\). For example if \(R\) is \(SI^3\) ring then for every \(k \in R\) can be express as \(\pm e_1 \pm e_2 \pm e_3\). Therefore we have

\[(1) \quad (k-3)(k-2)(k-1)k = 0.\]
(2) \((k - 2)(k - 1)k(k + 1) = 0\).
(3) \((k - 1)k(k + 1)(k + 2) = 0\).
(4) \(k(k + 1)(k + 2)(k + 3) = 0\).

Corollary 3.3. If every element of a ring \(R\) is sum of \(m\) and difference of \(n\) commuting idempotents then every element of the ring is sum of \(m + n\) commuting idempotents i.e \(R\) is a \(SI^{m+n}\) ring.

Proof. Suppose \(k \in R\) be arbitrary so \((k - n) \in R\). So \(k - n\) can be expressed as
\[k - n = e_1 + e_2 + \ldots + e_m - e_{m+1} - e_{m+2} - \ldots - e_{m+n} \]
where \(e_i, 1 \leq i \leq (m + n)'s\) are commuting idempotents. Now \(k = e_1 + e_2 + \ldots + e_m + (1 - e_{m+1}) + (1 - e_{m+2}) + \ldots + (1 - e_{m+n})\) which is sum of \(m + n\) commuting idempotents. So \(R\) is \(SI^{m+n}\) ring.

Corollary 3.4. If every element of a ring \(R\) of the type \(l_1e_1 + l_2e_2 + \ldots + l_m e_m - p_1f_1 - p_2f_2 - \ldots - p_n e_n\) where \(l_i, p_j \in N ; 1 \geq i \geq m, 1 \geq j \geq n\). \(e_i, f_j\) are commuting idempotents then for every \(k \in R\) we have
\[\{k-(l_1+l_2+\ldots+l_m)\}\{k-(l_1+l_2+\ldots+l_m-1)\}\ldots(k-1)k(k+1)\ldots\{k+(p_1+p_2+\ldots+p_n)\} = 0\]

Also in this ring we have \((l_1 + l_2 + \ldots + l_m + p_1 + p_2 + \ldots + p_n + 1)! = 0\).

Using Proposition 3.4 we get the result.

Till now, ring in which every element is sum of 2, 3, 4 commuting idempotents are studied. So we study the rings in which every element is sum of \(n(n \geq 5)\) commuting idempotents.

Lemma 3.1[2]. Let \(a \in R\). If \(a^2 - a\) is nilpotent, then there exists a monic polynomial \(\theta(t) \in Z[t]\) such that \(\theta(a) = \theta(a)\) and \(a - \theta(a)\) is nilpotent.

Lemma 3.2[6]. Let \(p\) be a prime. The following are equivalent for a ring \(R:\)

1. \(p \in Nil(R)\) and \(a^p - a\) is nilpotent for all \(a \in R\).
2. \(J(R)\) is nil and \(R/J(R)\) is a subdirect product of \(Z_p\)'s.

Lemma 3.3[1]. [Theorem 2.7] A ring \(R\) is strongly nil-clean iff \(R/J(R)\) is Boolean and \(J(R)\) is nil.

Now we have to find the general properties of \(SI^n\) ring \(R\) where \(n \in N\). Clearly for a \(SI^n\) ring \(R\) we have \(n! = 0\). The other properties of \(SI^n\) ring is given below the proposition.

Proposition 3.6. If \(R\) is a \(SI^n\) \((n > 2)\) ring with unity and \((n+1)! = 2^{a_1}3^{a_2}5^{a_3}7^{a_4}11^{a_5}...p_1^{a_j}...p_m^{a_m}\).

Then we have

(a) For every \(k \in R\) we have \((k-n)(k-(n-1))\ldots(k-(n-2))\ldots(k-j)...(k-2)(k-1)k = 0\).

(b) \(R \cong R_1 \times R_2 \times R_3 \times \ldots \times R_j \times \ldots \times R_m\) where

1. \(R_1\) is zero or \(SI^n\) ring with \(2^{a_1} = 0\) and for every \(k \in R_1\) we have
\[(k^2-k)^{a_1} = 0; 2^{a_1-1}(k^2-k) = 0\text{ and }k^{2^{a_1-1}}. R_1\) is periodic. For every \(n \in Nil(R_1)\) we have \(n^{a_1} = 0, 2^{a_1-1}n = 0. R_1/J(R_1)\) is Boolean. For every \(j \in J(R_1)\) we have \(j^{a_1} = 0; 2^{a_1-1}j = 0. U(R_1)\) is a group of exponent \(2^{a_1-1}\) For every \(u \in U(R_1)\) we have \(2^{a_1-1}u = 2^{a_1-1}\).

2. \(R_2\) is zero or \(SI^n\) ring with \(3^{a_2} = 0\) and for every \(k \in R_2\) we have
\[(k^3-k)^{a_2} = 0; 3^{a_2-1}(k^3-k) = 0\text{ and }k^{3^{a_2-1}}. R_2\) is periodic. For every \(n \in Nil(R_2)\) we have \(n^{a_2} = 0, 3^{a_2-1}n = 0. R_2/J(R_2)\) is subdirect product of \(Z_3\)'s. For every \(j \in J(R_2)\) we have \(j^{a_2} = 0\).
0; 3^{a_2-1}j = 0. U(R_2) is a group of exponent $2 \times 3^{a_2-1}$. For every $u \in U(R_2)$ we have $3^{a_2-1}u^2 = 3^{a_2-1}$. If $a_2 = 1$ then R_2 is zero or subdirect product of Z_3's.

(i) R_i is zero or ST^n ring with $p_i^{a_i} = 0$ and for every $k \in R_i$ we have $(k^{p_i} - k)^{a_i} = 0; p_i^{a_i-1}(k^{p_i} - k) = 0$ and $k^{p_i a_i} = k^{p_i a_i-1}$. R_i is periodic. For every $n \in Nil(R_i)$ we have $n^{a_i} = 0, p_i^{a_i-1}n = 0$. $R_i/J(R_i)$ is subdirect product of Z_{p_i}. For every $j \in J(R_i)$ we have $j^{a_i} = 0; p_i^{a_i-1}j = 0$. $U(R_i)$ is a group of exponent $(p_i - 1)p_i^{a_i-1}$. For every $u \in U(R_i)$ we have $p_i^{a_i-1}u^{a_i-1} = p_i^{a_i-1}$.

If $a_i = 1$ then R_i is zero or subdirect product of Z_{p_i}'s.

(m) R_m is zero or ST^n ring with $p_m^{a_m} = 0$ and for every $k \in R_m$ we have $(k^{p_m} - k)^{a_m} = 0; p_m^{a_m-1}(k^{p_m} - k) = 0$ and $k^{p_m a_m} = k^{p_m a_m-1}$. R_m is periodic. For every $n \in Nil(R_i)$ we have $n^{a_m} = 0, p_m^{a_m-1}n = 0$. $R_m/J(R_m)$ is subdirect product of Z_{p_m}. For every $j \in J(R_m)$ we have $j^{a_m} = 0; p_m^{a_m-1}j = 0$. $U(R_m)$ is group of exponent $(p_m - 1)p_m^{a_m-1}$. For every $u \in U(R_i)$ we have $p_m^{a_m-1}u^{a_m-1} = p_m^{a_m-1}$.

Proof. As R is ST^n ring then by Proposition 3.1 for every $k \in R$ we have $(k - n)\{k - (n - 1)\}\{k - (n - 2)\}...(k - j)\cdots(k - 2)\cdots(k - 1)k = 0$.

Putting $k = n + 1$ we have $(n + 1)! = 0 \Rightarrow 2^{a_1}3^{a_2}5^{a_3}7^{a_4}11^{a_5}...p_i^{a_i}...p_m^{a_m} = 0$. Using Chinese Remainder Theorem we have $R \cong R_1 \times R_2 \times R_3 \times ... \times R_i \times ... \times R_m$ where $R_1 \cong \frac{R}{a_1 R}; R_2 \cong \frac{R}{a_2 R}; R_3 \cong \frac{R}{a_3 R}; ...; R_i \cong \frac{R}{a_i R}; ...; R_m \cong \frac{R}{a_m R}$.

Suppose $R_1 \neq 0$. In R_1 we have $2^{a_1} = 0$. Now for every $k \in R_1$ we have $k = \sum_{i=1}^{n} e_i \Rightarrow k^2 - k = 2 \sum_{e_i} e_1 e_2 \Rightarrow (k^2 - k)^{a_1} = 0; 2^{a_1-1}(k - 2) = 0$. Again $k^{2^2} = k^{2^{a_1-1}} + 2^{a_1}F_2$, where F_2 is a function of e_i's. Similarly we get $k^{2^3} = k^{2^{a_1-1}} + 2^{a_1}F_3$, $k^{2^4} = k^{2^{a_1-1}} + 2^{a_1}F_4$, ..., $k^{2^n} = k^{2^{a_1-1}} + 2^{a_1}F_n$, and finally $k^{2^n} = k^{2^{a_1-1}} + 2^{a_1}F_n = k^{2^{a_1-1}}$ where $F_1, F_2, ...F_n$ are functions of e_i's.

As $k^{2^n} = k^{2^{a_1-1}}$ for every $k \in R_1$ so R_1 is periodic. Now for every $n \in Nil(R_1)$ we have $1 - n^{a_1} \in U(R_i)$ for $\alpha \in N$. Now $(n^2 - n)^{a_1} = 0 \Rightarrow n^{a_1}(n - 1)^{a_1} = 0 \Rightarrow n^{a_1} = 0$.

Again $2^{a_1-1}(n^2 - n) = 0 \Rightarrow 2^{a_1-1}n(n - 1) = 0 \Rightarrow 2^{a_1-1}n = 0$.

Again $k^{2^2} - k$ is nilpotent for every $k \in R_1$ so by Lemma 3.1 and Corollary 3.1 there exist idempotent $e = \theta(k) \in R_1$ and a nilpotent $b = k - \theta(k) = k - e \in R_1$ such that $eb = be$. So $k = e + b$ is sum of idempotent and nilpotent that commute each other. So k is strongly nil clean. Hence R_1 is strongly nil clean, so by Lemma 3.3[1], $R_1/J(R_1)$ is Boolean and $J(R_1)$ is nil.

For $j \in J(R_1)$ we have $1 \pm j \in U(R_1)$. Now $(j^2 - j)^{a_1} = 0 \Rightarrow j^{a_1} = 0$. Also $2^{a_1-1}(j - 1) = 0 \Rightarrow 2^{a_1-1}j = 0$.

Again for $u \in U(R_1)$ we have $2^{a_1-1}u(u - 1) = 0 \Rightarrow 2^{a_1-1}u = 2^{a_1-1}$. Again $u^{2^{a_1-1}} = u^{2^{a_1-1}} \Rightarrow u^{2^{a_1-1}}(u^{2^{a_1-1}} - 1) = 0 \Rightarrow u^{2^{a_1-1}} = 1$. So $U(R)$ is group of exponent 2^{a_1-1}.
Suppose $R_i \neq 0$. In R_i we have $p_i^{a_i} = 0$. Now for every $k \in R_i$ we have $k = \sum_{i=1}^{n} e_i \Rightarrow k^{p_i} - k = p_i P\{e_i | 1 \geq i \geq n\} \Rightarrow (k^{p_i} - k)^{a_i} = 0; p_i^{a_i-1}(k^{p_i} - k) = 0$ where $P\{e_i | 1 \geq i \geq n\}$ is a polynomial in commuting $e_i, 1 \geq i \geq n$.

Now for every $n \in \text{Nil}(R_i)$ we have $1 - n^\alpha \in \text{Nil}(R_i)$ for $\alpha \in N$. Again $(n^{p_i} - n)^{a_i} = 0 \Rightarrow n^{a_i}(n^{p_i-1} - 1)^{a_i} = 0 \Rightarrow n^{a_i} = 0$. Also $p_i^{a_i-1}(n^{p_i} - n) = 0 \Rightarrow (p_i)^{a_i-1}n(n^{p_i-1} - 1) = 0 \Rightarrow p_i^{a_i-1}n = 0$. Again $k^{p_i} = k^{p_i-1} + p_i^{1}F_2, k^{p_i} = k^{p_i-1} + p_i^{1}F_3, \ldots$ and finally $k^{p_i} = k^{p_i-1} + p_i^{1}F_{a_i} \Rightarrow k^{p_i} = k^{p_i-1}$ where F_i's are functions of e_i's.

As $k^{p_i} = k^{p_i-1}$ for every $k \in R_i$ so R_i is periodic.

Using Lemma 3.2 we have $R_i/J(R_i)$ is subdirect product of Z_{p_i}'s and $J(R_i)$ is nil.

For $j \in J(R_i) \Rightarrow j^{p_i-1} \in J(R_i)$ we have $1 - j^{p_i-1} \in U(R_i)$. Now $(j^{p_i} - j)^{a_i} = 0 \Rightarrow j^{a_i}(j^{p_i-1} - 1)^{a_i} = 0 \Rightarrow j^{a_i} = 0$. Also $p_i^{a_i-1}j(j^{a_i-1} - 1) = 0 \Rightarrow p_i^{a_i-1}j = 0$.

Again for $u \in U(R_i)$ we have $p_i^{a_i-1}u(u-1) = 0 \Rightarrow p_i^{a_i-1}u = p_i^{a_i-1}$. Again $u^{p_i} = u^{p_i-1} \Rightarrow u^{p_i-1}(u^{p_i-1} - 1) = 0 \Rightarrow u^{p_i} - 1 = 1$. So $U(R_i)$ is group of exponent $(p_i - 1)p_i^{a_i-1}$.

Again if $a_i = 1$ then $p_i = 0$. Now if $k^2 = 0$ where $k = \sum_{i=1}^{n} e_i \Rightarrow k^{p_i} - k = p_i P\{e_i | 1 \geq i \geq n\} \Rightarrow k^{p_i} - k = 0 \Rightarrow k = 0$ where $P\{e_i | 1 \geq i \geq n\}$ is a polynomial in commuting $e_i, 1 \geq i \geq n$. So R_i is reduced ring. So R_i is subdirect product of the domains $\{R_\alpha\}$. But R_α has only trivial idempotents 0, 1. We infer that $R_\alpha = \{0, 1, 2, 3, \ldots, p_i - 1\}$ as $p_i = 0$ in R_α. Hence R_i is subdirect product of Z_{p_i}'s.

Similarly we can prove the results for R_2, \ldots, R_m.

Examples. In SI^5 we have $6! = 0 \Rightarrow 2^4 \times 3^2 \times 5 = 0$. $\prod_{\alpha \in \wedge} R_\alpha$, where $R_\alpha = Z_5$ is SI^5 ring. Similarly $\prod_{\alpha \in \wedge} R_\alpha \times \prod_{\beta \in \wedge} R_\beta$, where $R_\alpha = Z_5$ and $R_\beta = Z_7$ is a SI^6 ring.

Proposition 3.7. If the ring R is subdirect product of Z_p where p is prime then every element of R is a sum of $p - 1$ commuting idempotents.

Proof. Here R is subdirect product of $\{R_\alpha : \alpha \in \wedge\}$ where $R_\alpha = Z_p$ for all $\alpha \in \wedge$. So R is a subring of $\prod_{\alpha \in \wedge} R_\alpha$. Let $x = (x_\alpha) \in R$. Then \wedge is a disjoint union of $\wedge_0, \wedge_1, \wedge_2, \ldots, \wedge_{p-2}, \wedge_{p-1}$ such that $x_\alpha = i$ if and only if $\alpha \in \wedge_i$ for $i = 0, 1, 2, 3, \ldots, p - 1$. Without loss of generality, we can denote $x = (0_{\wedge_0}, 1_{\wedge_1}, 2_{\wedge_0}, \ldots, i_{\wedge_i}, \ldots, (p - 1)_{\wedge_{p-1}})$. Now

\[
e_1 = (0_{\wedge_0}, 1_{\wedge_1}, 1_{\wedge_2}, \ldots, 1_{\wedge_i}, \ldots, 1_{\wedge_{p-1}}) \in R, \\
e_2 = (0_{\wedge_0}, 0_{\wedge_1}, 1_{\wedge_2}, \ldots, 1_{\wedge_i}, \ldots, 1_{\wedge_{p-1}}) \in R, \\
\vdots \\
e_{i-1} = (0_{\wedge_0}, 0_{\wedge_1}, 0_{\wedge_2}, \ldots, 1_{\wedge_{i-1}}, 1_{\wedge_i}, 1_{\wedge_{i+1}}, \ldots, 1_{\wedge_{p-1}}) \in R, \\
e_i = (0_{\wedge_0}, 0_{\wedge_1}, 0_{\wedge_2}, \ldots, 1_{\wedge_i}, 1_{\wedge_{i+1}}, \ldots, 1_{\wedge_{p-1}}) \in R, \\
e_{i+1} = (0_{\wedge_0}, 0_{\wedge_1}, 1_{\wedge_2}, \ldots, 0_{\wedge_i}, 1_{\wedge_{i+1}}, \ldots, 1_{\wedge_{p-1}}) \in R, \\
\vdots \\
e_{p-1} = (0_{\wedge_0}, 0_{\wedge_1}, 0_{\wedge_2}, \ldots, 0_{\wedge_i}, \ldots, 1_{\wedge_{p-1}}) \in R.
\]
Clearly we can see that \(e_i^2 = e_i, e_ie_j = e_je_i \forall 1 \leq i, j \leq p - 1 \) and \(x = e_1 + e_2 + ... + e_i + ... + e_{p-1} \). This shows every element of \(R \) is a sum of \(p - 1 \) commuting idempotents.

4. **Rings in which every element is sum of \(n_1 \) and difference of \(m_1 \) commuting idempotents / or sum of \(n_2 \) and difference of \(m_2 \) commuting idempotents / or........../or sum of \(n_t \) and difference of \(m_t \) commuting idempotents**

From the Corollary 3.2 we get if \(R \) is a \(SI^n \) ring then every element can be express as sum of \(l \) idempotents and difference of \(m \) idempotents which commute each other such that \(l + m = n \). i.e the elements of of a \(SI^n \) ring can be express as \(\pm e_1 \pm e_2 \pm e_3 \ldots \pm e_n \). For example if we take \(SI^3 \) ring \(R \) then it’s element can be express as \(\pm e_1 \pm e_2 \pm e_3 \).

But there is a difference, i.e if we take a ring in which every element can be express as sum of three commuting idempotents or/ sum of two and difference of one commuting idempotents or/ sum of one and difference of two commuting idempotents or/ difference of three commuting idempotents then it does not mean that it is \(SI^3 \) ring. Because if we take \(k \) is sum of 3 commuting idempotents then \(k + 1 \) may not sum of three commuting idempotents. Let’s first find the structure of this ring.

Proposition 4.1. If every element of a ring \(R \) is of the type \(e_1 + e_2 + e_3 \) or \(e_1 + e_2 - e_3 \) or \(e_1 - e_2 - e_3 \) or \(-e_1 - e_2 - e_3 \) where \(e_i(1 \leq i \leq 3) \) are commute each other then \(R \) satisfies

\[
(k - 3)(k - 2)(k - 1)k(k + 1)(k + 2)(k + 3) = 0
\]

for every \(k \in R \) and \(R \) satisfy the same properties as \(SI^6 \) ring as in the Proposition 3.4.

Proof. Using Proposition 3.2 we have When if \(k \in R \) with \(k = e_1 + e_2 + e_3 \), where \(e_i(1 \leq i \leq 3) \) are commute each other then

\[
(k - 3)(k - 2)(k - 1)k = 0 \quad (4.1)
\]

When if \(k \in R \) with \(k = e_1 + e_2 - e_3 \), where \(e_i(1 \leq i \leq 3) \) are commute each other then

\[
(k - 2)(k - 1)k(k + 1) = 0 \quad (4.2)
\]

When if \(k \in R \) with \(k = e_1 - e_2 - e_3 \), where \(e_i(1 \leq i \leq 3) \) are commute each other then

\[
(k - 1)k(k + 1)(k + 2) = 0 \quad (4.3)
\]

When if \(k \in R \) with \(k = -e_1 - e_2 - e_3 \), where \(e_i(1 \leq i \leq 3) \) are commute each other then

\[
k(k + 1)(k + 2)(k + 3) = 0 \quad (4.4)
\]

Combining all the equations (4.1),(4.2),(4.3),(4.4) we have

\[
(k - 3)(k - 2)(k - 1)k(k + 1)(k + 2)(k + 3) = 0
\]

which is nothing but the equation of a ring in which every element is sum of 3 and difference of 3 commuting idempotents. Now if \(k \in R \) then \((k - 3) \in R \) so
Then we have

So using Chinese Remainder Theorem

So

Now we going to prove the generalized version.

Proposition 4.2. If in a ring \(R \) every element is sum of \(n_1 \) and difference of \(m_1 \) commuting idempotents / or sum of \(n_2 \) and difference of \(m_2 \) commuting idempotents / or........./or sum of \(n_t \) and difference of \(m_t \) commuting idempotents. Then \(R \) satisfies

\[
(k - n)k - (n - 1)....\{k + (m - 1)\}(k + m) = 0
\]

where \((k - n)k - (n - 1)....\{k + (m - 1)\}(k + m) = L.C.M\{\{k - (n_1)\}{k - (n_1 - 1)}\}...\{k + (m_1 - 1)\}{k + m_1}, (k - n_2)\{k - (n_2 - 1)}\}...\{k + (m_2 - 1)\}{k + m_2},, (k - n_t)\{k - (n_t - 1)}\}...\{k + (m_t - 1)\}{k + m_t}.)

\(R \) is a \(SI^{m+n} \) ring and satisfies the properties as in the Proposition 3.6.

Proof. Using Proposition 3.2 we have If \(k \in R \) is sum of \(n_1 \) and difference of \(m_1 \) commuting idempotents then

\[
(k - n_1)\{k - (n_1 - 1)}\}...\{k + (m_1 - 1)\}(k + m_1) = 0
\]

If \(k \in R \) is sum of \(n_2 \) and difference of \(m_1 \) commuting idempotents then

\[
(k - n_2)\{k - (n_2 - 1)}\}...\{k + (m_2 - 1)\}(k + m_2) = 0
\]

..

If \(k \in R \) is sum of \(n_t \) and difference of \(m_t \) commuting idempotents then

\[
(k - n_t)\{k - (n_t - 1)}\}...\{k + (m_t - 1)\}(k + m_t) = 0
\]

..

If \(k \in R \) is sum of \(n_t \) and difference of \(m_t \) commuting idempotents then

\[
(k - n_t)\{k - (n_t - 1)}\}...\{k + (m_t - 1)\}(k + m_t) = 0
\]

Now if we take L.C.M of all the right hand side equations and letting \((k - n)k - (n - 1)....\{k + (m - 1)\}(k + m) = L.C.M\{\{k - (n_1)\}{k - (n_1 - 1)}\}...\{k + (m_1 - 1)\}{k + m_1}, (k - n_2)\{k - (n_2 - 1)}\}...\{k + (m_2 - 1)\}{k + m_2},, (k - n_t)\{k - (n_t - 1)}\}...\{k + (m_t - 1)\}{k + m_t}.

Then we have

\[
(k - n)k - (n - 1)....\{k + (m - 1)\}(k + m) = 0
\]

So \(R \) is a \(SI^{m+n} \) ring. Therefore \((m + n + 1)! = 0 \). We get get the properties of the ring \(R \) using the Proposition 3.6. For example if if every element of a ring \(R \) is sum of 200 and difference of 100 commuting idempotents /or sum of 80 and difference of 500 idempotents then \(R \) is a \(SI^{200+500} = SI^{700} \) ring and 701! = 0 and we get the result of the ring using Proposition 4.2.
References

1 Department of Mathematics, Gauhati University, Jalukbari-014, Assam, India.

Email address: kurnapoleondeka@gmail.com

2 Department of Mathematics, Gauhati University, Jalukbari-014, Assam, India.

Email address: hsaikia@yahoo.com